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Calculation of eigenvalues of a strongly chaotic system using Gaussian wave-packet dynamics
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We apply the approximate dynamics derived from the Gaussian time-dependent variational principle

~TDVP! to the HamiltonianĤ5
1
2 ( p̂x

21 p̂y
2)1 1

2 x̂
2ŷ2, which is strongly chaotic in the classical limit. We are

able to calculate, essentially analytically, low-lying eigenvalues for this system. These approximate eigenval-
ues agree within a few percent with the numerical results. We believe that this is the first example of the use
of TDVP dynamics to compute individual eigenvalues in a nontrivial system and one of the few such compu-
tations in a chaotic system byanymethod.@S1063-651X~97!07407-2#

PACS number~s!: 05.45.1b, 03.65.Sq, 05.40.1j
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I. INTRODUCTION

Gaussian approximations to quantum mechanics h
been utilized successfully in many contexts including qu
tum field theory@1#, the dynamics of hydrogen plasma@2#,
semiclassical propagation methods@3,4#, quantum control
@5#, and the study of ‘‘quantum chaos’’@6#. The primary
motivation for their popularity is simplicity of computation
Gaussians are easily parameterized by thec number vari-
ables specifying the centroid~average variables! and spread
~fluctuation variables! and their dynamics are essential
classical, apart from the computation of a phase which
crucial element. Further, Gaussians arise naturally in the
herent state representation of quantum mechanics@7# and in
theN5` limit ~whereN is number of degrees of freedom!
of many-body systems@8#. There are a variety of Gaussia
approximations including:~1! a variational approximation
usually derived through the time-dependent variational p
ciple ~TDVP! @1,9,10#, ~2! a recently introduced quadratic
order Gaussian approximation@4#, ~3! Heller’s method@3#,
which is a non-self-consistent truncation of~2!, and ~4! the
multiple classical trajectory version of Heller’s method@11#.
A further level of approximation yields the Gaussian effe
tive potential method, which consists of an adiabatic elim
nation of the time dependence of the fluctuation variable
the TDVP dynamics@12#.

The widespread use of these methods raises the que
of their validity and range of applicability@13#. It has been
argued that in the presence of chaos, semiclassical app
mations to quantum mechanics should break down on a lo
rithmic time scaletc;1/l log(1/\), wherel is the largest
Lyapunov exponent of the underlying classical mechan
and\ is Planck’s constant. Computations with the multip
trajectory Gaussian approximation has demonstrated that
may be a pessimistic estimate@11#. Recently, the validity of
the TDVP approximation has also been considered. Ap
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from the chaos in the underlying classical system, it has b
shown that the approximate quantum dynamics derived fr
the TDVP may be chaotic even when the classical limit
not @14#. This has led to the argument@15# that the TDVP
Gaussian approximation fails in the presence of chaos. H
ever, it has been shown that this anomalous chaotic beha
persists even when exact numerical computations are m
@16#. It is argued, in fact, that this chaos is a signature of
complicated nature of the spectrum involved in the ex
quantum dynamics@4,17#. Further, recent work by Habib
@18# shows thatall Gaussian approximations to Schr¨-
dinger’s equation are identical to the same approximation
the classicalLiouville equation, although the classical ve
sions do not have any phase information. This result clari
that\ is a kinematical constant in these approximations, p
viding a scale for the ‘‘smoothing’’ of the dynamics an
reinterprets the ‘‘quantum effects’’ included in Gaussian a
proximations. It does not invalidate the results of the qu
tum Gaussian approximations, although it does require th
results to be understood in kinematical rather than dynam
terms. The result also emphasizes that quantum dynamic
better approximated by classical Liouville dynamics rath
than Hamilton’s equations for point trajectories@19#.

It is thus clear that Gaussian approximations should
used and interpreted with caution. However, as we s
demonstrate in this paper, the TDVP Gaussian approxi
tion doesyield accurate results even in the presence of cha
in a system where other approximations fail. The TDVP d
namics can be used to compute eigenvalues@20,4# through
an extension of the Einstein-Brillouin-Keller~EBK! quanti-
zation method@21#. We use this method to compute eige
values for the two-dimensional coupled quartic oscillator

Ĥ5
p̂x
21 p̂y

2

2
1
1

2
x̂2ŷ2. ~1!

This system is highly chaotic classically@22#; it was believed
till recently to be ergodic, and the integrable regions of ph
space occupy less than 0.005% of the volume. The qua
Hamiltonian also resists numerical analysis; large basis
do not suffice for quantization@23#. It is usual for numerical
ease to add a term such asb( x̂41 ŷ4) to the potential and to
analyze the system in the limitb→0. The traditional meth-

of
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56 279CALCULATION OF EIGENVALUES OF A STRONGLY . . .
ods for semiclassical quantization fail for this particular s
tem. Firstly, the EBK method cannot be applied because
the chaos in the system—there are no stable torii to use
quantization. The alternative methods developed in the fi
of quantum chaos@6# also do not work. The most prominen
of these, the trace formula method, starts from Feynma
path-integral representation of quantum mechanics,
through a sequence of stationary phase approximations
rives the eigenvalues of the quantum system as poles
weighted sum over the unstable periodic orbits of the cla
cal system@24#. Recent successes in other systems@24,25#
notwithstanding, the systematic enumeration of the unsta
periodic orbits of the classical system has not been achie
for this particular system. Another alternative, Heller’s a
proach@3#, which computes an approximate time-depend
wave function^C(t)u and Fourier transforms the overla
^C(t)uC(0)&, fails because of the inherent instability of th
truncation, as argued in a previous qualitative@4# analysis in
model potentials. In the same paper, we demonstrated
the TDVP dynamics restores stability to systems where
truncated Gaussian dynamics fail; in fact, the TDVP dyna
ics can be stable even when theclassicaldynamics are un-
stable. This is precisely what happens in the system given
Eq. ~1!: An infinite set of unstable periodic orbits is stab
lized by the ‘‘quantal fluctuation’’ terms in the TDVP
method. These orbits can then be used to compute app
mate eigenvalues for a symmetry subspace of this sys
Remarkably, these are obtainedanalytically ~barring a nu-
merical integral!. Further, these results are obtained w
b50, i.e., the regime where even large basis-set calculat
fail to converge. The high degree of chaos in the system
the fact that we use\51 in our calculations suggests th
näive perspective that the classical-like TDVP approach
then far from its region of validity. However, our results a
extremely accurate when compared with the ‘‘exact’’ n
merical results over a substantial range for the lowest-ly
eigenvalues. Thus, while there is no suggestion that
method can always be used in the presence of chaos to
cessfully approximate quantum dynamics, our results in
cate that it can certainly be used with care in some circu
stances.

In Sec. II, we shall briefly review the dynamical equatio
for the TDVP method, including the construction of a qua
tization rule. In the third section, we apply this method to E
~1!, comparing the method in the process to the usual se
classical methods. We then discuss the results and argue
the regime of validity of the method is the low quantum
number regime, contrary to the usual intuition derived fro
the correspondence principle that classical-like approxim
tions work best in the high quantum-number regime@6#. We
thus suggest that the TDVP Gaussian approximation wo
best as a technique complementary to the usual semiclas
methods.

II. TDVP GAUSSIAN DYNAMICS

The usual derivation of these dynamics proceeds fr
Dirac’s time-dependent variational principle@9,10#; this pos-
its an action of the formG5*dt^C,tu i\]/]t2ĤuC,t&. The
general requirement thatdG50 yields the Schro¨dinger equa-
tion and its complex conjugate. The true solution is appro
-
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mated by restrictinguC(t)& to a subspace of the full Hilber
space and settingdG50 within this subspace. In particula
this restriction may be to the space of general Gaussians@1#.
We have derived these same dynamics@14,4# in a somewhat
more intuitive fashion from Ehrenfest’s Theorem. We st
with the equations for the centroid variables and make
Taylor expansion around the centroid with the higher m
ments of the wave function. These moments follow the us
Heisenberg dynamics, yielding in general an infinite syst
of equations. We render this system finite by projecting o
the space of Gaussians; this system of equations are iden
to those derived from the TDVP.

We have been able to represent these dynamics a
extendedclassical gradient systemfor the average and fluc
tuation variables with dynamical equations

dx

dt
5p, ~2!

dp

dt
52 (

m50

m5`
r2m

m!2m
V~2m11!~x!, ~3!

dr

dt
5P, ~4!

dP

dt
5

\2

4r3
2 (

m51

m5`
r2m21

~m21!!2m21V
~2m!~x!, ~5!

and a Hamiltonian

Hext5
p2

2
1

P2

2
1Vext~x,r!; ~6!

Vext~x,r!5V~x!1
\2

8r2
1 (

m51

r2m

m!2m
V~2m!~x!, ~7!

where the subscript ext indicates the ‘‘extended’’ poten
and Hamiltonian andV(n)5]nV/]xnu^ x̂& . The coordinate
variables for the extended Hamiltonians arex,r, and their
canonically conjugate momenta arep,P and are related to
the moments of the GaussianC(x,p,r,P,t) as follows:

^x̂&[x, ~8!

^ p̂&[p, ~9!

^DxDp1DpDx&[2rP, ~10!

^Dx2m&5
~2m!!r2m

m!2m
, ~11!

^Dx2m11&50, ~12!

r2^Dp2&5
\2

4
1r2P2. ~13!

The first three relationships Eqs.~8–10! aredefinitionsand
Eqs.~11! and~12! are a consequence of the Gaussian ans
Equation ~13! is a kinematical constraint arising entire
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280 56ARJENDU K. PATTANAYAK AND WILLIAM C. SCHIEVE
from choosing the equality in the uncertainty principle re
tionship; it is the only way in which\ enters this approxi-
mation.

In this method, the fluctuation and average variables
treated on the same footing and the phase space is dim
sionally consistent:r has the dimensions of length andP
that of momentum. The geometry of the space is thus id
tical to that of an ordinary classical system—it is a Cartes
space, a manifoldR(2N) defining the extended phase spac
There is also an equation for the phase of the wave funct
If we define l as uF,t&[exp@il(t)/\#uC,t& it is simple to
derive from Schro¨dinger’s equation the equations fo
l5lD1lG , with the first part

lD52E
0

t

dt^Ĥ&52tHext ~14!

corresponding to the dynamical phase. The second part i
geometrical phase

lG5E
0

t

dt K i\ ]

]t L 5E
0

t

dtS ṙP2Ṗr

2
1pẋD . ~15!

For cyclic evolution this is the Aharanov-Anandan form
‘‘Berry’s phase’’ @26#; it depends only on the geometry o
the evolutionary path in phase space and can be written

lG~C!5 R
C
P–dQ, ~16!

whereP[(p,P) andQ[(x,r). The equation for the phase
along with the Hamiltonian equations of motion for the ev
lution of the wave function parameters constitute the TD
dynamics. This lies on a spaceR(2N)3S(1); for the case
just consideredN52, the result is completely general, how
ever.

We now provide a constructive argument@4# for obtaining
eigenfunctions and eigenvalues, which is equivalent to
posing a single-valuedness constraint on stationary w
functions @20# in the extended phase space. Note that
eigenfunction for the extended dynamics is one whose
rameters areinvariant under the evolution. We see readi
that a periodic orbit~PO! solution to Hamilton’s equations
Eqs. ~2!–~5! is invariant on theR(2N) subspace; however
each point along the PO acquires a phase factor during
evolution. The dynamical phase is the same for all the po
along the PO and can be factored as a global phase.
geometrical partlG for the PO is crucial: We note that
PO3lG , such that the periodic evolution oflG on S(1) is
commensuratewith that of the PO onR(2N) is a function
invariant on entire spaceR(2N)3S(1) and is hence an
eigenfunction. The commensurability of the phase transla
to the relation

lG~PO!5
1

2p R
PO
P–dQ5n\, ~17!

where we have used Eq.~16!. Thus, the eigenfunction is
weighted sum~the weight factor at each point being the a
propriate geometrical phase! over the points of the commen
surate periodic orbit and the eigenvalue isHext for that PO.
-
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This rule is the same as the ‘‘old’’ quantization rule of Bo
and Sommerfeld; however, it applies in theextendedphase
space, as opposed to the classical phase space and thus
not have the same meaning. In particular, there are
Maslov-Morse corrections@21# to this rule, since there are n
singularities in the Gaussian representation. It can be sh
@27,4# that the ‘‘spread’’ variablesr,P explicitly take care
of these corrections. In general, this quantization condit
will give results different from the EBK rule~the POs are in
the extended space! but always incorporates the Maslov co
rection. The extension of this argument from POs to inva
ant torii goes through easily@20# and leads to a general quan
tization rule

1

2p R
Ci

P–dQ5ni\, ~18!

where the closed integral is now taken over thei th irreduc-
ible contour around the torus and the quantum numberni
are labeled accordingly. This is exactly Einstein’s gener
zation @28# of the Bohr-Sommerfeld rule to invariant torii.

The system of equations derived by Heller@3# for the
semiclassical evolution of Gaussian wave packets obtain
truncations of Eqs.~2! and~3! to O(r0) and of Eqs.~4! and
~5! to O(r1). This arguably@4# inconsistent semiclassica
system of equations destroys the Hamiltonian structure of
dynamics, leading to nonunitary evolution@29#. A consistent
truncation toO(r1)) for this system retains the Hamiltonia
structure of the TDVP method and has been termed exten
semiclassical dynamics@4#: All the advantages of the TDVP
method applies to the extended semiclassical method, inc
ing the definition of a Poisson bracket, and the existence
unitary propagator and an analytic quantization method. U
like the TDVP method, Heller’s Gaussian dynamics and
extended semiclassical dynamics arise as ‘‘controlled’’ fir
order expansions; their validity can thus be formally eva
ated @13# and these are hence attractive approximatio
However, the truncation of the dynamical equations at
term involving the third derivative of the potential induces
unphysical instability, where the fluctuation variables gro
without bound@4# even for simple one-dimensional anha
monic potentials likeV(x)5x4. In the TDVP dynamics, all
orders of derivatives are maintained with a resummation
the moment expansion under a Gaussian ansatz; this y
behavior that is qualitatively similar to the exact long-ter
quantal behavior, in particular reproducing the appropri
stability. Thus, the TDVP method can stabilize unstable
riodic orbits, which may then be used as above to obt
eigenvalues and eigenfunctions, as we now demonstrate

III. EIGENVALUES FOR A CHAOTIC HAMILTONIAN

We now turn to the computation of eigenvalues for t
Hamiltonian

Ĥ5
p̂x
21 p̂y

2

2
1
1

2
x̂2ŷ21b~ x̂41 ŷ4!. ~19!

Extensive numerical work@23,22# shows that the classica
limit ( Ô→O for all operators! is a very strongly chaotic
system, with few stable periodic orbits in the limitb→0. It
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56 281CALCULATION OF EIGENVALUES OF A STRONGLY . . .
is easy to verify, however, the existence of an infinity
unstable periodic orbits along the diagonals of the poten
We also note here that the Hamiltonian displays a sim
scaling relationship in energy @23#: A trajectory
„x1(t),p1(t)… at an energyE1 is related to a trajectory
„x2(t),p2(t)… at an energyE2 by

x2~t!5SE2

E1
D 1/4x1~ t !, ~20!

p2~t!5SE2

E1
D 1/2p1~ t !, ~21!

where t is the rescaled timet5(E2 /E1)
21/4. This means

that there is the same degree of strong chaos at all fi
energies: There is no ‘‘transition to chaos.’’ Eckhardt, Ho
and Pollak have done a careful numerical analysis of
quantum system to show the presence of ‘‘scars’’ in
eigenfunctions@23#. They state that harmonic oscillato
basis-set quantization with matrices of dimension 3240
not provide converging eigenvalues forb50; they have
hence usedb50.01 for their analysis. The eigenfunctions
this Hamiltonian belong to the symmetry classes of theC4n

symmetry group which has eight elements~four reflections
in the axes and diagonals and four rotations byp/2). The
irreducible representations of this group split into four on
dimensional representations and one two-dimensional re
sentation. They have restricted themselves to the four o
dimensional representations corresponding to wave funct
which are~A! symmetric underx→y, x→2x, ~B! antisym-
metric, symmetric,~C! symmetric, antisymmetric, and~D!
antisymmetric, antisymmetric, respectively, and have
merically obtained low-lying eigenvalues and eigenstates
this system.

We have applied the Gaussian wave-packet methods
tailed above to this system withb50. Of the three methods
the truncated Gaussian methods~both Heller’s dynamics and
the extended semiclassical system! fail, yielding unstable
motion where the wave-packets spread without bound, i
spective of the value ofb. This is easily established by no
ing that there exist one-dimensional projections in which t
two-dimensional potential reduces to the anharmonic qua
potential considered above and the existence of a single
stable direction for the dynamics corresponds to instability
the global motion. This exposes one particular frailty of t
truncated Gaussian approximations: they work well in s
tems that are close to harmonic only in theparticular sense
of being potentials of the formV(x)5x21 f (x) with the
function f (x) containing higher polynomials.

On the other hand, the TDVP method works excellen
for this system; firstly, the dynamics are complete
bounded. It is an interesting feature of this approach t
even though there exist classically unbounded orbits al
x50 or y50 ~which are precisely what make the numeric
quantal analysis through basis sets so difficult! the inclusion
of the resummed moment terms via the variational appro
restores stability to the problem. This effect has been term
‘‘quantum resuscitation’’ in the context of the Gaussian
fective potential @12#. The extended Hamiltonian for th
TDVP @usingC5F(x)F(y) and\51# is
f
l.
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Hext5
1
2 ~px

21py
21Px

21Py
2!1

1

8rx
2 1

1

8ry
21

1

2
~x21rx

2!

3~y21ry
2!. ~22!

Note that the use of the factored wave functions explic
restricts us to the one-dimensional representations. The
namics of this extended Hamiltonian are, in general, chao
However, if we consider the subspaces of the o
dimensional representation noted above, we find that the
and third subspace can be studied by the symmetry-redu
version ofHext

H5 1
2 ~p21P2!1

1

8r2
1
1

4
~z21r2!2, ~23!

where (z,p) and (r,P) are the canonically conjugate pair
We now demonstrate that this symmetry-reduced vers

of the extendedHamiltonian is explicitly integrable. To do
so, we make the change of variables to spherical coordin
R,u defined in the plane by:z5Rcosu; r5Rsinu . This
transforms the Hamiltonian to

H5
pR
2

2
1
R4

4
1

1

R2Fpu
2

2
1

1

8 sin2uG . ~24!

Since the factor multiplying 1/R2 is solely a function ofu,
this is now in the right form to use Hamilton-Jacobi theo
@30#. Through the separability just noted, therefore, we int
duce Hamilton’s characteristic functionsWR andWu and get
the Hamiltonian-Jacobi equations

1

2S ]Wu

]u D 21 1

8sin2u
5k, ~25!

1

2S ]WR

]R D 21R4

4
1

k

R2 5E, ~26!

whereE ~the energy! andk are the constants of separatio
We form action variables as usual

Ju5
1

2p R du
]Wu

]u
~27!

5
1

2p R duS 2k2
1

4 sin2u D 1/2, ~28!

JR5
1

2p R dR
]WR

]R
~29!

5
1

2p R dRS 2E2
2k

R2 2
R4

2 D 1/2. ~30!

The u integral yields@31#

Ju5
a21

2
, ~31!

wherea is introduced for convenience throughk[a2/8. The
R integral is a complicated elliptic integral that can be eva
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FIG. 1. Comparison of lowest eigenvalues in dimensionless units. Note that\51.
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ated; however, it cannot be analytically inverted to yield t
quantization condition. We, hence, leave it in quadrature

JR5
1

2p R dRS 2E2
~2Ju11!2

4R2 2
R4

2 D 1/2. ~32!

The existence of this integral demonstrates the integrab
of the chosen symmetry subspace of the extended Ha
tonian. Since we now have a set of stable invariant tori
the extended space, we can proceed with the quantizatio
detailed above in a straightforward fashion. To wit: Eige
values correspond to torii with quantized actions in bo
variablesR and u. We follow this prescription by setting
Ju equal to a half-integer in the above equation@the
symmetry-reduced form of the Hamiltonian only accum
lates half the phase of the actual Hamiltonian which is w
we use half-integers#; this yields a one-degree of freedo
dynamical system inR which has only closed orbits. W
then proceed as follows: We take various initial conditio
and numerically integrate their dynamics over the closed
bit to compute the actionrPRdR. The orbits for which the
action equals a half-integer then correspond to eigenfu
tions and their conserved energy the associated eigenv
We show the results for the first 67 eigenvalues in Fig.
compared with the numerical results@32# of Eckhardt, Hose,
and Pollak. We now note that the eigenvalues we have
culated essentially analytically agree within a few perc
with the numerical results@23# over the substantial range o
our calculations.

We emphasize that there is no possibility that the valid
of the results can be attributed to the minute regions of
bility of the classical phase space@33#. A moment’s consid-
eration shows that the use of the factored wave functions
the restrictiony(t)5x(t)[z(t) for the symmetric dynamics
corresponds to restricting our attention to the diagonals
e

ty
il-
n
as
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-
y

s
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c-
ue.
,

l-
t

y
a-

nd

f

the potential. That is, the dynamics of the Gaussian are
stricted such that the centroid always travels always al
the unstable periodic orbits along these diagonals. The
classical stable periodic orbits that do exist in this system
far from this region and our results cannot be understood
affected by the presence of these orbits; the wave pack
not influenced by them.

Further, we note that there is a superficial similarity
these results to other work@34# that demonstrates the effi
cacy of Gaussian approximations in computing low-lyi
spectral features. However, those results depend on pertu
tions of a classically integrable Hamiltonians. As such, th
were able to use standard quantal perturbation theory. Th
not possible for Eq.~1!. Further, since the classical dynami
is ab initio strongly chaotic, even the Gustavson-Birko
quantization technique@35#, which is an adaptation of clas
sical perturbation theory, cannot be applied. In either ca
there is nothing to perturb around for this system. This a
emphasizes the nonperturbative aspect of the variationa
proximation.

It is clear that the TDVP method in this system tak
advantage of the interesting feature of being able to use
infinity of periodic orbits along the diagonals of the pote
tial. These orbits are classicallyunstable, and the formal ap-
plication of the WKB quantization method to this unstab
periodic orbit yields metastable states@36#, where the eigen-
values have a real part~corresponding to the energy! and an
imaginary part~corresponding to the lifetime of the state!.
Apart from the unphysical metastability of these states,
approximate energies thus obtained are valid only for
first few states—we show the limited accuracy in Fig.
where we have plotted the real parts of the first ten eigen
ues from this method. This same instability of the period
orbit causes the breakdown of the truncated Gaussian s
classical methods as well. However, the TDVP Gaussian
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56 283CALCULATION OF EIGENVALUES OF A STRONGLY . . .
satz makes dynamics along these periodic orbitsstable—an
example of ‘‘quantum resuscitation’’—and our generaliz
quantization method succeeds.

There are more general considerations also: Note t
despite the high degree of chaos in the system, the pote
is relatively benign for Gaussian approximations: It has o
one minimum and no maxima. However, since it is a qua
well, this does not benefit the truncated approximations
we must turn to the fully resummed TDVP approximation
take advantage of this structure. Second, the high valu
\ is an advantage in this context. As recent work@37# dem-
onstrates, at higher values of\ the details of the classica
phase-space structure are smoothed out in the quanta
namics†see Fig. 2~a! of @37#‡, as reflected by the quanta
eigenfunctions. Since\ also sets the kinematical scale
smoothness for the TDVP Gaussian method@18#, this means
that both the exact quantal dynamics and our approxim
version are effectively occurring in a smoother potential w
than the classical point dynamics. Both these factors im
that distorted Gaussians can be expected to evolve wit
excessive error under such circumstances. Further,
smoothness permits the weighted superposition of Gauss
inherent in the TDVP eigenfunction ansatz to yield accur
results: The detailed structure of the wave functions may
argued to contribute rapidly oscillating terms that affect
computation ofaveragesof observables in these states in
small way. Thus, eigenvalues, which are the average of
Hamiltonian operator, may be quite accurate even when
detailed dynamics of the variational approximation are
so. This also clarifies that the method is expected to be v
in the regime of the lowest-lying eigenvalues, contrary to
usual correspondence principle regime where classical-
approximations work best in the high quantum number
gime @6#. This is supported by our results: they devia
slowly away from the numerical results as the quantum nu
ber increases.

Our results thus show that the degree of chaos in a c
sical problem doesnot necessarily limit the validity of the
m
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TDVP Gaussian dynamics. In a general case, chaos in
classical dynamics of a system coexists with complica
potential energy surfaces; Gaussian methods would he
apply only over a small range of parameters. However, th
are systems that may be extremely chaotic, but possess
appropriate structure that enables the TDVP Gaussian
proximation to work over a much larger range, especially
the high\ regime; this explains the many successful app
cations@2#, for instance. It is clear that these arguments ne
to be explored carefully in more situations.

In summary, we have analytically~barring a numerical
integral! computed the lowest-lying eigenvalues of a clas
cally strongly chaotic system. We believe that this is the fi
example of the use of TDVP dynamics to compute individu
eigenvalues in a nontrivial system and one of the few s
computations in a chaotic system byanymethod. These re-
sults compare extremely favorably with numerical resu
and show that the limits of validity of the TDVP method a
not necessarily set by the degree of chaos in the class
system. Accurate quantum dynamical simulations are q
difficult and there is a great need for valid approximatio
@38#. Heller’s truncated Gaussian approximation has alre
been shown@3# to be extremely useful for systems that c
be explicitly written as perturbations around a harmo
minimum. It is intuitive that Gaussian approximations shou
continue have validity in potential wells, even in the pre
ence of chaos; however, the truncated Gaussian method
in anharmonic systems. We believe that the TDVP Gauss
method is an excellent candidate for approximate quan
dynamics in these and other situations.
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